Matematika

Pertanyaan

Dari barisan geometri, jika diketahui suku ke 3 = 2 dan suku ke 7 = 32, maka suku ke 9 adalah

2 Jawaban

  • Un = ar^(n-1)
    U3 = ar^(3-1)
    2 = ar^2 .. pers. (1)
    U7 = ar^(7-1)
    32 = ar^6 ... pers. (2)
    U7 / U3 => 16 =r^4 => r = 2
    selanjutnya di substitusikan ke pers. 1
    U3=ar^2
    2 = a 2^2
    2 = 4a
    a = 2/4 = 1/2
    jadi U9 = ar^(n-1) = 1/2 * 2^(9-1) = 1/2 * 2^8 = 1/2 * 256 = 128
    jadi suku ke-9 adalah 128

    #jadikan jawaban terbaik ya#
  • u3 = ar ^ 2 = 2
    u7 = ar ^ 6 = 32

    u7/u3 = 32/2
    ar ^ 6 / ar ^ 2 = 32/2
    r ^ 4 = 16
    r = 2
    untuk mencari nilai a maka r di substitusi
    ar ^ 2 = 2
    a. 2 ^ 2 = 2
    a. 4 = 2
    a = 1/2

    u9 = ar ^ 8
    = 1/2 . 2 ^ 8
    = 1/2 . 256
    = 128



Pertanyaan Lainnya